

Valerie Reed Acting Director

8 March 2021

U.S. DEPARTMENT OF ENERGY
BIOENERGY TECHNOLOGIES OFFICE

Outline

- I. Welcome to BETO Peer Review
- II. Overview of BETO Mission
- III. BETO areas of activity
- IV. Highlights

Welcome!

2021 PROJECT / PEER REVIEW

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

> March 8–12, March 15–16, and March 22–26 Held Virtually for 2021

A special thanks to our Reviewers, Presenters, and Attendees!

Our Economy Is Built on Carbon

Photos by iStock

BETO Mission, Vision, and Strategic Goals

A thriving and sustainable bioeconomy fueled by innovative technologies

Developing transformative and revolutionary sustainable bioenergy and coproduct technologies for a prosperous nation

Develop industrially relevant technologies to enable domestically produced biofuels, biopower, and coproducts

BETO Critical Program Areas

Production and Harvesting

Conversion and Refining

Distribution and End Use

Feedstock Technologies

Lower cost, improve quality, and increase types of renewable carbon feedstock intermediates available for conversion.

Conversion Technologies

Reduce costs of deconstructing feedstock into intermediate products (such as sugars, intermediate chemicals, bio-oils, or gaseous mixtures)

Upgrading intermediates into liquid biofuels, bioproducts, and biopower

Systems Development and Integration

Systems research to combine tech components, unit operations, or subsystems developed by R&D programs into integrated processes.

Integrated processes tested (pre-pilot to demo scale) to identify further R&D needs or verify readiness for scale-up and commercialization.

Advanced Algal Systems

Increase algae productivity through algal strain improvement and efficient cultivation.

Crosscutting

Data, Modeling, and Analysis

Track technology progress and identify opportunities and challenges related to economic/environmental impact of advanced bioenergy systems.

FY 2019-FY 2021 BETO Budget

Program Area	FY 2019*	FY 2020*	FY 2021*
Advanced Algal Systems (AAS)	32,000	40,000	40,000
Feedstock Supply and Logistics (FSL)	30,500	40,000	40,000
Conversion Technologies	96,000	110,000	110,000
Systems Development and Integration (SDI). Formerly Advanced Development and Optimization	57,500	60,000	55,500
Strategic Analysis and Sustainability	10,000	9,500	9,500
Total, Bioenergy Technologies	226,000	259,500	255,000

^{*}Dollars in thousands

DOE National Laboratories

National Laboratories Process Development Units

Advanced Biofuels PDU LBNL

Biomass Feedstock PDU INL

Integrated Biorefinery PDU NREL

Coupled Pyrolyzer -DCR NREL

Hydrothermal & Hydrotreating PDU PNNL

Energy Efficiency & Renewable Energy

BETO Consortia: The Spirit of National Laboratory Collaboration

Bioenergy consortia overview: energy.gov/eere/bioenergy/bioenergy-consortia

From Challenge to Opportunity

THE CHALLENGE

More than \$215 million is spent every day on foreign oil imports (\$43/barrel/day in 2016*). Dependence on foreign oil can leave us vulnerable to disruptions in supplies and contributes significantly to our trade deficit.

Transportation accounts for 67% of petroleum consumption.

*Annual Energy Outlook 2017 with projections to 2050 eia.gov/outlooks/aeo/pdf/0383(2017).pdf

THE OPPORTUNITY

More than **1** billion tons of biomass could be domestically converted into biofuels and products.

Biomass could displace up to **25%** of U.S. petroleum use annually by 2030, **keeping revenues in the United States**, adding **jobs**, and reducing annual CO₂ emissions**.

^{**} Rogers et al. 2016, An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. onlinelibrary.wiley.com/doi/10.1002/bbb.1728/full

Total Available Biomass Key Consideration

- Biomass can fully supply future Aviation/ Maritime/Rail (requires 75% of all feedstocks)
- Biggest market pull is in sustainable aviation fuels (SAF)
- DOE has 3 large scale SAF Demo projects (Fulcrum, Red Rocks, Lanzatech)
- Provides market for current ethanol
 (~17B gal, ~40% of corn production)
- Supports decarbonization of chemicals via **bioproducts**, and decarbonization of agriculture through healthy forests and sustainable agriculture
- CO₂-to-fuels remains to be explored

Opportunities to Reach BETO Price Goals

BETO's goal for \$2.50/Gasoline Gallon Equivalent (GGE) of a drop-in hydrocarbon

biofuel by 2030

SAF CO2 Reduction Potential

Feedstocks to Fuels, Bioenergy, and Bioproducts

Key Challenges				
Feedstock	Pretreatment	Conversion	Product	
Reliable supplyConsistent qualityAffordable delivery	 Biomass feeding, sizing and moisture Solids handling Material of construction 	Products yieldsMaterial of constructionCatalystsFermentation organisms	SeparationsCatalytic upgradingRecycle loops	

Recent BETO Highlights

NREL demonstrated:

- Recovery/valorization potential of a total of 81% of lignin
- Recovery of a solid lignin carbon stream and a dimers stream

 BETO improved summer algae productivity to 27.1 g/m²/day in FY19, exceeding the FY19 target of 15.9 g/m²/day by 70%

The Co-Optimization of Fuels & Engines initiative identified biofuel-derived blendstock candidates that offer environmental benefits and boost energy efficiency

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | BIOENERGY TECHNOLOGIES OFFICE

- LanzaTech developed their Alcohol to Jet (ATJ) technology with Pacific Northwest National Laboratory
- Flew Virgin Atlantic's Boeing 747
 aircraft from Orlando, FL to Gatwick
 Airport, United Kingdom with fuel
 blend made from industrial waste
 gases

Thank you!